Manufactura y caracterización de aleaciones de alta entropía

Autores/as

DOI:

https://doi.org/10.18779/ingenio.v5i2.519

Palabras clave:

Aleaciones de alta entropía, aleado mecánico, aluminio, propiedades mecánicas

Resumen

Las aleaciones de alta entropía son una nueva clase de aleaciones multicomponentes, que consisten en cinco o más elementos metálicos con proporciones equiatómicas. A pesar del gran número de elementos de aleación, las HEA pueden exhibir fases de solución sólida simples, como las fases cúbicas centrada en las caras y centrada en el cuerpo. En este trabajo se fabricó la aleación AlxCrCuFeNiTi (x = 0, 0.45, 1, 2.5, 5 mol) mediante aleado mecánico para determinar el efecto del aluminio en la evolución de fases durante el proceso y su impacto en las propiedades mecánicas. La molienda de los polvos se realizó a 300 rpm durante 180 minutos. Los polvos resultantes de la molienda se prensaron a 250 kg/cm2. Las muestras prensadas se sinterizaron a 1300°C durante 1 hora. De los resultados se tiene que, al aumentar la concentración de aluminio, las aleaciones sufren una transformación de una sola fase FCC a una mezcla de fases FCC y BCC, así como la precipitación de intermetálicos de FeAl3, Al3Ni, TiAl y Ti3Al. La aleación que alcanzó la mayor dureza fue la de mayor contenido de aluminio. Estas aleaciones se endurecen significativamente con la adición de aluminio, debido a la formación de la fase BCC y por la formación de intermetálicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv Eng Mater, 6, 299-303, 2004.

C.Y. Hsu, J.W. Yeh, S.K. Chen and T.T. Shun, “Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with Boron addition,” Metall. Mater. Trans. A 35, 1465-1469, 2004.

P.K. Huang, J.W. Yeh, T.T. Shun and S.K. Chen, “Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating,” Adv Eng Mater 6, 74-78, 2004.

B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A 375-377, 213-218, 2004.

A.M. Manzoni, S. Singh, H.M. Daoud, R. Popp, R. Volkl, U. Glatzel, N. Wanderka, “On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications,” ENTROPY,18, 4, 104-109, 2016.

S.I. Vorobiov, D.M. Kondrakhova, S.A. Nepijko, D.V. Poduremne, N.I. Shumakova, I.Y. Protsenko, “Crystalline Structure, Electrophysical and Magnetoresistive Properties of High Entropy Film Alloys,” Journal of Nano and Electronic Physics, 11, 2, 1-6, 2016.

S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, “Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys,” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 527, 21-22, 5818-5825, 2010.

A.M. Manzoni, S. Singh, H.M. Daoud, R. Volkl, U. Glatzel, N. Wanderka, N, “On the Optimization of the Microstructure and Mechanical Properties of Al-Co-Cr-Cu-Fe-Ni-Ti -Based High Entropy Alloys,” Jordan Journal of Physics, 8, 3, 177-186, 2015.

D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, “Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys,” Materials & Design, 116, 438-447, 2017.

C.W. Tsai, M.H. Tsai J.W., Yeh C.C. Yang CC, “Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy,” J Alloys Compd, 490, 160-165, 2010.

A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, “Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions,” Mater Sci Eng A, 533, 107-118, 2012.

Y.H. Fan, Y.P. Zhang, H.G. Guan, H.M. Suo and L. He, “AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy,” Rare Met Mater Eng, 42, 1127-1129, 2013.

M.V. Marych, G.A. Bagliuk, A.A. Mamonova, A.N. Gripachevskii, “The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti-Cr-Fe-Ni-Cu alloy,” Powder Metallurgy and Metal Ceramics, 57, 9-10, 533-541, 2019.

C.D. Gomez-Esparza, F. Baldenebro-Lopez, L. Gonzalez-Rodelas, J. Baldenebro-Lopez, R. Martinez-Sanchez, “Series of Nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) High- Entropy Alloys produced by Mechanical Alloying,” Materials Research-Ibero-American Journal of Materials, 19, 39-46, 2016.

A.I. Yurkova, V.V. Chernyavskii, V.F. Gorban', “Structure and Mechanical Properties of High-Entropy AlCuNiFeTi and AlCuNiFeCr Alloys Produced by Mechanical Activation Followed by Pressure Sintering,” Powder Metallurgy and Metal Ceramics, 55, 3-4, 152-163, 2016.

G.A. Baglyuk, M.V. Marich, A.A. Mamonova, A.N. Gripachevskii, “Features of Structurization During Sintering of Compacts from a Multicomponent Ti-Cr-Fe-Ni-Cu Charge,” Powder Metallurgy and Metal Ceramics, 54, 9-10, 543-547, 2016.

R. Sriharitha, B.S. Murty, R.S. Kottada, “Phase formation in mechanically alloyed AlxCoCrCuFeNi (x=0.45, 1, 2.5, 5 mol) high entropy alloys,” Intermetallics, 32, 119-126, 2013.

Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, “Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system,” Journal of Alloys and Compounds, 481, 1-2, 768-775, 2009.

Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J.W. Yeh, T.S. Chin, S.K. Chen, Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying,” Journal of Alloys and Compounds, 477, 1-2, 696-705, 2009.

Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou and E.J. Lavernia, “Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy,” Acta Mater, 107 59-71, 2016.

A.M. Manzonia, U. Glatzelb, “New multiphase compositionally complex alloys driven by the high entropy alloy approach,” Materials Characterization, 147, 512–532, 2019.

B. Cantor, “Multicompent and High Entropy Alloys,” Entropy, 16, 4749-4768, 2014.

B.E. MacDonald, Z. Fu, B. Zheng, W Chen, Y Lin, F Chen, L. Zhang, J Ivanisenko, Y Zhou, H Hahn and E, J. Lavernia, “Recent Progress in High Entropy Alloy Research”, JOM, 69, 10, 2024–2031, 2017.

ASTM C20-00 (2010). Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water.

ASTM C1327 (2015), Standard test method for Vickers indentation hardness of advanced ceramics.

Y.J. Zhou, Y. Zhang, Y.L. Wang, & G.L. Chen, “Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties”, Applied Physics Letters, 90(18), 181904, 2007.

J.F. Shackelford, Y. Han, S. Kim, & S. Kwon, CRC Materials Science and Engineering Handbook (English Edition) (4.a ed.). CRC Press, 2016.

J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, & Z. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system”, Acta Materialia, 62, 105–113, 2014.

Imagen representativa del artículo

Publicado

2022-07-01

Cómo citar

Rocha-Rangel, E., Castillo-Robles , J. A., Rodríguez-García , J. A., & Armendáriz-Mireles, E. N. (2022). Manufactura y caracterización de aleaciones de alta entropía. Revista InGenio, 5(2), 31–39. https://doi.org/10.18779/ingenio.v5i2.519

Número

Sección

Artículos