Aplicación de sulfato de calcio a un suelo con alta concentración de sodio de origen natural

Autores/as

DOI:

https://doi.org/10.18779/cyt.v16i2.549

Palabras clave:

enmienda, macroporosidad, penetrabilidad, Na intercambiable, sulfato de calcio

Resumen

Los suelos con exceso de sodio de origen natural aumentan la concentración de Na intercambiable con la profundidad. Son suelos improductivos por la pérdida de la macroporosidad y por el efecto negativo en el metabolismo de las plantas. El yeso mejora las propiedades de estos suelos al desplazar al Na en exceso por Ca. Para evaluar el efecto del yeso sobre un suelo con exceso de Na de origen natural con pastura implantada (Festuca arundinacea), se instalaron dos experimentos contiguos de parcelas dispuestas al azar: Experimento 1, cuatro dosis (1, 2, 3, 0 Mg ha-1) de dos yesos; y Experimento 2, tres dosis (0, 0.6 Mg ha-1 de azufre, 3 Mg ha-1 de tres yesos). Luego de 420 días, en las parcelas del Experimento 1 donde se aplicó la enmienda, el Na intercambiable se redujo un 22 % con un aumento paralelo del 10 % de Ca intercambiable, presentando mayor penetrabilidad y humedad del suelo y alrededor de 50 % mayor rendimiento de la pastura. En tanto, que en el Experimento 2 hubo rendimientos similares para las enmiendas, aunque la absorción de azufre fue 5 % mayor por las pasturas con yeso. Se concluye que el yeso agrícola es efectivo para disminuir el Na intercambiable en la profundidad de suelo estudiada, aumentar el rendimiento y mejorar la calidad de la pastura. Dado que la fuente natural del Na no puede ser aislada debe estudiarse a largo plazo la efectividad de las dosis y las fuentes de yeso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alcaraz, F.J. (2012). Salinidad y Vegetación. Geobotánica: Universidad de Murcia. https://www.um.es/docencia/geobotanica/ficheros/tema18.pdf

Arévalo, E., Bonadeo, E., Lara, F., Amengual, C., Cerruti, A., y Milan C. (2009). Aplicación de calcio y magnesio sobre la producción de alfalfa en suelos “manchoneados” del centro de Córdoba. Argentina: Agromercado: cuadernillo clásico de forrajeras (149), 16 – 17. https://www.produccion-animal.com.ar/produccion_y_manejo_pasturas/pasturas_cultivadas_alfalfa/112-manchoneados_17.pdf

Armstrong, R.D., Eagle, C., y Flood, R. (2015). Improving grain yields on a sodic clay soil in a temperate, medium–rainfall cropping environment. Crop & Pasture Science,66, (5), 492 – 505. https://doi.org/10.1071/CP14210

Bandera, R. (2013). Rehabilitación de suelos salino – sódicos: evaluación de enmiendas y especies forrajeras [tesis de magister, Universidad de Buenos Aires]. http://hdl.handle.net/20.500.12123/5880

Bonadeo, E., Moreno, I., Baranda, A., y Milan, C. (2014). Changes in a sodic soil after gypsum application under dryland conditions. European Scientific Journal, 10 (27), 367 – 377. https://doi.org/10.19044/esj.2014.v10n27p%25p

Brady, N., y Weil, R. (2008). The Nature and Properties of Soils. New Jersey, Estados Unidos: Pearson Education INC.

Chi, C.M., Zhao, C.W., Sun, X.J., y Wang, Z.C. (2012). Reclamation of saline – sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. 2012. Geoderma, 187 – 188, 24 – 30. https://doi.org/10.1016/j.geoderma.2012.04.005

Costa, J.L., y Godz, P. (1999). Aplicación de yeso a un natracuol del sudeste de la pampa deprimida. Ciencia del Suelo, 17 (2), 21 – 27. http://suelos.org.ar/publicaciones/vol_17n2/costa_21-27.pdf

Durán, A., y García, F. (2007). Suelos del Uruguay. Origen, clasificación, manejo y conservación. Volumen I. Montevideo, Uruguay: Editorial Hemisferio Sur.

González, A.P. (Ed.). (2006). Bases para la Conservación de Suelos y Aguas en la Cuenca del Río Paraná. Santa Fe, Argentina: Universidad de Entre Ríos.

Imbellone, P.A., Giménez, J.E., y Panigatti, J.L. (2010). Suelos de la Región Pampeana: Procesos de formación. Buenos Aires, Argentina: Ediciones INTA. https://inta.gob.ar/documentos/suelos-de-la-region-pampeana.-procesos-de-formacion.

Khan, J.M., Jan, M.T., Khan, A.U., Arif, M., y Shafi, M. (2010). Management of saline sodic soils through cultural practices and gypsum. Pakistan Journal of Botany, 42 (6), 4143 – 4155. http://www.pakbs.org/pjbot/

Lebron, I., Suarez, D.L., y Yoshida, T. (2002). Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Science Society of American Journal, 66 (1), 92 – 98. https://doi.org/10.2136/sssaj2002.9200

Longo, A., Ferratto, J., Mondino, M., y Grasso, R. (2005). Incorporación de azufre y yeso en suelo salino – sódico: su efecto sobre el rendimiento y calidad de lechuga bajo invernadero. Revista FAVE – Ciencias Agrarias, 4 (1 –2), 31 -36. https://doi.org/10.14409/fa.v4i1/2.1311

Loveday, J. (1976). Relative significance of electrolyte and cation exchange effects when gypsum is applied to a sodic clay soil. Australian Journal of Soil Research, 14 (3), 361 – 371. https://doi.org/10.1071/SR9760361

Martínez-Villavicencio, N., López-Alonzo, C.V., Pérez-Leal, R., y Basurto-Sotelo, M. (2011). Efectos por salinidad en el desarrollo vegetativo. Tecnociencia Chihuahua, 5 (3), 156 – 161. https://vocero.uach.mx/index.php/tecnociencia/article/view/694

Milan, C., y Bonadeo, E. (2017). Efecto de la aplicación de yeso sobre la capacidad productiva de un suelo sódico de alta variabilidad espacial. Ciencia del Suelo (Argentina), 35 (2), 315 – 323. https://ojs.suelos.org.ar/index.php/cds

Polak, G. (2011). Agricultura de precisión para la corrección de ambientes con elevado valor de sodio intercambiable [Tesis de Especialista en Fertilidad de Suelos y Fertilización, Universidad de Buenos Aires]. http://repositoriouba.sisbi.uba.ar/

Provin, T.; Pitt, J.L. (2012). Managing soil salinity. Texas Agrilife Extensión Service Publication, E – 60 (5), 3 – 12. http://soiltesting.tamu.edu/publications/E-60.pdf

Rasouli, F., Pouya, A., y Karimi, N. (2013). Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma, 193 – 194, 246 – 255. https://doi.org/10.1016/j.geoderma.2012.10.001

Rengasamy, P., y Olsson, K.A. (1991). Sodicity and soil structure. Australian Journal of Soil Research, 29 (6), 935 – 952. https://doi.org/10.1071/SR9910935

Sahin, U., y Anapali, O. (2005). A laboratory study of effects of water dissolved gypsum application on hydraulic conductivity of saline – sodic soil under intermittent ponding conditions. Irish Journal of Agricultural and Food Research, 44 (2), 297 – 303. https://www.jstor.org/stable/25562554

Sharma, M.L. (1971). Physical and physico – chemical changes in the profile of a sodic soil treated with gypsum. Australian Journal of Soil Research, 9 (2), 73 – 82. https://doi.org/10.1071/SR9710073

Yazdanpanah, N., Pazira, E., Neshat, A., Mahmoodabadi, M., y Rodríguez, L. (2013). Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agricultural Water Management, 120, 39 – 45. https://doi.org/10.1016/j.agwat.2012.08.017

Descargas

Publicado

2023-12-20

Cómo citar

Ballestero, J., del Pino, A., & Barbazán, M. (2023). Aplicación de sulfato de calcio a un suelo con alta concentración de sodio de origen natural. Ciencia Y Tecnología, 16(2), 1–8. https://doi.org/10.18779/cyt.v16i2.549