Selección Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S

  • Hayron Fabricio Canchignia Martínez Universidad Técnica Estatal de Quevedo. Facultad de Ciencias Agrarias
  • Karen Tatiana Chávez-Arteaga Departamento Bionintanga, NINTANGA S.A
  • Jefferson Javier Guato-Molina Fincas Experimentales Nestlé, R&D. Tours, Quevedo
  • María Fernanda Peñafiel-Jaramillo Universidad Técnica Estatal de Quevedo
  • Camilo Alexander Mestanza-Uquillas Universidad Técnica Estatal de Quevedo, Facultad de Ciencias Pecuarias
Palabras clave: Musa, Pseudomonas, Mycosphaerella fijiensis, bacterias,, proteasa, cianuro de hidrogeno, pirrolnitrina

Resumen

El objetivo del trabajo se enfocó en identificar bacterias fluorescentes productoras de metabolitos secundarios antagónicos y analizar su biodiversidad al gen ARNr 16S. Las bacterias se aislaron de cultivares nativos de Musa de las provincias: Los Ríos, Cotopaxi y Bolívar. El escrutinio de las cepas antagónicas se basó en la actividad proteolítica y la amplificación de genes antifúngicos. Además, se realizó el análisis filogenético al ARN ribosomal 16S por análisis de restricción ARDRA y secuenciación. Desde rizósfera de siete cultivares nativos de Musa se rescató y seleccionó 16 cepas nativas con emisión fluorescente, observando la actividad proteasa (PR) para las cepas (PB3-6, BO3-4, BA4-19, PM3-8 y PM3-14). Verificando por PCR la presencia del gen hcnABC (HCN) de 570 pb en las cepas (PB3-6, BO3-4, PM3-8 y PM3-14) y pirrolnitrina (Prn) de 786 pb en las cepas (BMR2-2, BMR2-4, BMR2-12, BO3-4 y PM3-14). Los perfiles genéticos por ARDRA agruparon las cepas nativas de Musa productoras a PR, Prn y HCN (BMR2-2, BMR2-12, PB3-6, BO3-4, BA4-19, PM3-8 y PM3-14). La caracterización molecular por secuenciación del gen ARNr 16S, se verificaron los géneros: Serratia, Pseudomonas, Acinetobacter, Enterobacter y Klebsiella. Considerando siete cepas de bacterias candidatas de actividad antagónica que servirán para la continuidad de la investigación al efecto positivo en incremento de biomasa en plantaciones de banano y efecto bio-controlador a Mycosphaerella fijiensis.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abraham, J., & Silambarasan, S. 2015. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan. Applied Biochemistry and Biotechnology, 3–13. https://doi.org/10.1007/s12010-015-1504-7
Afsharmanesh, H., Ahmadzadeh, M., Javan-Nikkhah, M., & Behboudi, K. 2010. Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. Journal of Plant Pathology, 92(1), 187–194.
Almeida, G., & Almeida, E. A. De. 2006. Production of yellow-green fluorescent pigment by Pseudomonas fluorescens. Brazilian Archives of Biology and Technology, 49(May), 411–419.
Ayyadurai, N., Ravindra, P., Sreehari, M., Sunish, R., Samrat, S., Manohar, M., & Sakthivel, N. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. Journal of Applied Microbiology, 100(5), 926–937. https://doi.org/10.1111/j.1365-2672.2006.02863.x
Canchignia, H., Altimira, F., Montes, C., Sánchez, E., Tapia, E., Miccono, M., Espinoza, D., Aguirre, C., Seeger, M., Prieto, H. 2016. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. Journal of Geneneral and Applied Microbiology, 62, 1–11. https://doi.org/10.2323/jgam.2016.07.001
De Souza, J., De Boer, M., De Waard, P., Van Beek, T., & Raaijmakers, J. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 69(12), 7161–7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
Döbereiner, J., Baldani, V. L. D., & Reis, V. M. 1995. Endophytic occurrence of diazotrophic bacteria in Non-Leguminous crops. In Azospirillum VI and Related Microorganisms (pp. 3–14). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79906-8_1
Farokh, R. Z., Sachdev, D., Pour, N. K., Engineer, A., Pardesi, K. R., Zinjarde, S., Chopade, B. A. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556–566. https://doi.org/10.4014/jmb.1012.12006
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap, 39(4), 783–791.
Fischer, S., Jofré, E., Cordero, P., Gutiérrez, F., & Mori, G. 2010. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 97(3), 241–251. https://doi.org/10.1007/s10482-009-9405-9
Frey, P., Chavatte, M., Clausse, M., Courrier, S., Le Roux, C., Raaijmakers, J., Garbaye, J. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165(1), 317–328. https://doi.org/10.1111/j.1469-8137.2004.01212.x
Gutiérrez-Román, M. I., Holguín-Meléndez, F., Bello-Mendoza, R., Guillén-Navarro, K., Dunn, M. F., & Huerta-Palacios, G. 2012. Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens. World Journal of Microbiology and Biotechnology, 28(1), 145–153. https://doi.org/10.1007/s11274-011-0803-6
Gutiérrez-Román, M. I., Holguín-Meléndez, F., Dunn, M. F., Guillén-Navarro, K., & Huerta-Palacios, G. 2015. Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). BioControl, 60(4), 1–8. https://doi.org/10.1007/s10526-015-9655-6
Gutiérrez, M., Holguín, F., Dunn, M., Guillén, K., & Huerta, G. 2015. Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis , causal agent of black Sigatoka in banana ( Musa spp .). International Organization for Biological Control. https://doi.org/10.1007/s10526-015-9655-6
Haas, D., & Défago, G. 2005. Soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology, (March). https://doi.org/10.1038/nrmicro1129
Hebbar, K., Davey, A., Merrin, J., & Dart, P. 1992. Rhizobacteria of maize antagonistic to Fusarium-Moniliforme, a soil-borne fungal pathogen: Colonization of rhizosphere and roots. Soil Biology & Biochemistry, 24(10), 989–997. https://doi.org/10.1016/0038-0717(92)90027-u
Hernández García, M., Morgante, V., Ávila Perez, M., Villalobos Biaggini, P., Miralles Noé, P., González Vergara, M., & Seeger Pfeiffer, M. 2008. Novel s-triazine-degrading bacteria isolated from agricultural soils of central Chile for herbicide bioremediation. Electronic Journal of Biotechnology, 11(5). https://doi.org/10.2225/vol11-issue5-fulltext-4
Hohnadel, D., & Meyer, J. 1988. Specificity of pyoverdine-mediated ironuUptake Pseudomonas Strainst. Journal of Bacteriology, 170(10), 4865–4873.
Infante, D., Martínez, B., González, N., & Reyes, Y. 2009. Mecanismo de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24(1), 14–21.
Janda, J. M., & Abbott, S. L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07
Kang, S. M., Joo, G. J., Hamayun, M., Na, C. I., Shin, D. H., Kim, H. Y., Lee, I. J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277–281. https://doi.org/10.1007/s10529-008-9867-2
King, E., Ward, M., & Raney, D. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307. https://doi.org/10.5555/URI:PII:002221435490222X
Kolbert, C. P., & Persing, D. H. 1999. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Current Opinion in Microbiology, 2(3), 299–305. https://doi.org/10.1016/S1369-5274(99)80052-6
Kuarabachew, H., Assefa, F., & Hiskias, Y. 2007. Evaluation of Ethiopian isolates of Pseudomonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agriculturae Slovenica, 902(12), 125–135.
Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H., & Pe, K. Van. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria †. Pest Management Science, 56, 688–695.
Lin, L., Wei, C., Chen, M., Wang, H., Li, Y., Li, Y., & Yang, L. 2015. Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Standards in Genomic Sciences, 10(22), 1–7. https://doi.org/10.1186/s40793-015-0004-2
Matilla, M. A., Pizarro-Tobias, P., Roca, A., Fernández, M., Duque, E., Molina, L., Ramos, J. L. 2011. Complete genome of the plant growth-promoting rhizobacterium Pseudomonas putida BIRD-1. Journal of Bacteriology, 193(5), 1290. https://doi.org/10.1128/JB.01281-10
Maurhofer, M., & Keel, C. 2005. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. Journal of Applied Microbiology, 0(99), 24–38. https://doi.org/10.1111/j.1365-2672.2005.02597.x
Mavrodi, D. V, Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G., & Thomashow, L. S. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 183(21), 6454–6465. https://doi.org/10.1128/JB.183.21.6454
Mechihi, T., Stackebrant, E., & Fuchs, N. 2002. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp . nov ., Thauera aminoaromatica sp . nov ., and Azoarcus buckelii sp . nov . Archives Microbiology, 178, 26–35. https://doi.org/10.1007/s00203-002-0422-6
Mirleau, P., Delorme, S., Philippot, L., Meyer, J., Mazurier, S., & Y, P. L. 2000. Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. Microbial Ecology, 34(February), 35–44.
Naik, P. R., Sahoo, N., Goswami, D., Ayyadurai, N., & Sakthivel, N. 2008. Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microbial Ecology, 56(3), 492–504. https://doi.org/10.1007/s00248-008-9368-9
Raaijmakers, J., Weller, D., & Thomashow, L. 1997. Frequency of antibiotic-producing Pseudomonas spp . in natural environments. Applied and Environmental Microbiology, 63(3), 881–887.
Ren, D., Zuo, R., & Wood, T. K. 2005. Quorum-sensing antagonist influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa, 689–695. https://doi.org/10.1007/s00253-004-1691-6
Roca, A., Pizarro-Tobías, P., Udaondo, Z., Fernández, M., Matilla, M. A., Molina-Henares, M. A., Ramos, J. L. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environmental Microbiology, 15(3), 780–794. https://doi.org/10.1111/1462-2920.12037
Rosenblueth, M., Martínez, L., Silva, J., & Martínez-Romero, E. 2004. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Systematic and Applied Microbiology, 27(1), 27–35. https://doi.org/10.1078/0723-2020-00261
Ross, I. L., Alami, Y., Harvey, P., Achouak, W., & Ryder, M. 2000. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66(4), 1609–16. https://doi.org/10.1128/AEM.66.4.1609-1616.2000
Sharifi, A., Zala, M., Natsch, A., Moënne, Y., & Défago, G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology, 104(7), 631–643. https://doi.org/10.1023/A:1008672104562
Siddiqui, I. A., Haas, D., & Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0 , a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71(9), 5646–5649. https://doi.org/10.1128/AEM.71.9.5646
Simon, A., & Ridge, E. 1974. The use of ampicillin in a simplified selective medium for the isolation of fluorescent Pseudomonads. Journal of Applied Bacteriology, 37(3), 459–460. https://doi.org/10.1111/j.1365-2672.1974.tb00464.x
Smith, H., & Dner, K. 1958. Detection of bacterial gelatinases by gelatin-agar plate methods. Department of Bactriology and Immunology, 76(6), 662–665.
Someya, N., Nakajima, M., & Watanabe, K. 2014. Biocontrol science and technology potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Science and Technology, (December 2014), 37–41. https://doi.org/10.1080/09583150400016092
Sutra, L., Risède, J., & Gardan, L. 2000. Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Letters in Applied Microbiology, 31(4), 289–293. https://doi.org/10.1046/j.1472-765X.2000.00816.x
Svercel, M., Duffy, B., & Défago, G. 2007. PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. Journal of Microbiological Methods, 70(1), 209–213. https://doi.org/10.1016/j.mimet.2007.03.018
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 243–254. https://doi.org/10.1007/s10658-007-9165-1
Vessey, J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893
Wei, C., Lin, L., Luo, L., & Xing, Y. 2013. Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. https://doi.org/10.1007/s00374-013-0878-3
Xue, Q. Y., Chen, Y., Li, S. M., Chen, L. F., Ding, G. C., Guo, D. W., & Guo, J. H. 2009. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252–258. https://doi.org/10.1016/j.biocontrol.2008.11.004
Yang, J., Liang, L., Li, J., & Zhang, K. 2013. Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97, 7081–7095. https://doi.org/10.1007/s00253-013-5045-0
Yeon, S., Jeong, W., & Park, J. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. The Journal of Microbiology, 43(1), 1–10.
Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., Shen, B. 2012. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research, 167(7), 388–394. https://doi.org/10.1016/j.micres.2012.01.003
Publicado
2018-12-30
Cómo citar
Martínez, H. F., Chávez-Arteaga, K., Guato-Molina, J., Peñafiel-Jaramillo, M., & Mestanza-Uquillas, C. (2018, diciembre 30). Selección Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Ciencia Y Tecnología, 11(2), 17-29. https://doi.org/https://doi.org/10.18779/cyt.v11i2.204