InGenio Journal
Revista de Ciencias de la Ingeniería de la Universidad Técnica Estatal de Quevedo
https://revistas.uteq.edu.ec/index.php/ingenio
e-ISSN: 2697-3642 CC BY-NC-SA 4.0
Volumen 5 | Número 1 | Pp. 1021 | Enero 2022 Recibido (Received): 2021/10/01
DOI: https://doi.org/10.18779/ingenio.v5i1.472 Aceptado (Accepted): 2021/12/03
Revisión de la literatura sobre el uso de Inteligencia
Artificial enfocada a la atención de la discapacidad
visual
(Literature review on the use of Artificial Intelligence focused on visual
impairment care)
Ruth Alvarado-Salazar
1,2
, Joe Llerena-Izquierdo
1,2
1
Universidad Politécnica Salesiana, Guayaquil, Ecuador
2
GIEACI Research Group and GieTICEA Educational Innovation Group
ralvarados@est.ups.edu.ec, jllerena@ups.edu.ec
Resumen: Este trabajo realiza una revisión sistemática de literatura centrada en la atención
a la discapacidad visual apoyada por la inteligencia artificial categorizando la relevancia de
aportaciones sobre machine learning. El objetivo principal es determinar técnicas que se
aplican para la atención a la discapacidad visual mediante inteligencia artificial durante los
años 2017 al 2021 de diferentes estudios relevantes hallados en bases indexadas como
Scopus, Web of Science, IEEExplore y Springer. De un total de 545 publicaciones se
determinaron 33 artículos categorizados en cuatro ámbitos, aprendizaje automático, redes
neuronales artificiales, procesamiento de lenguaje natural y visión artificial relacionadas al
ámbito de la discapacidad visual. Se evidencian tendencias de aplicación con técnicas que
involucran a la inteligencia artificial y que permiten abrir campos donde la tecnología tiene
un desafío que en cierta medida es un apoyo a las personas que presentan baja visión y
plantean mecanismos para mejorar la calidad de vida.
Palabras clave: Inteligencia artificial, ceguera, discapacidad visual, deficiencia visual.
Abstract: This paper performs a systematic literature review focused on the attention to
visual impairment supported by artificial intelligence categorizing the relevance of
contributions on machine learning. The main objective is to determine techniques that are
applied for the attention to visual impairment using artificial intelligence during the years
2017 to 2021 from different relevant studies found in indexed bases such as Scopus, Web
of Science, IEEExplore and Springer. From a total of 545 publications, 33 articles
categorized in four areas, machine learning, artificial neural networks, natural language
processing and artificial vision related to the field of visual impairment were determined.
There is evidence of application trends with techniques that involve artificial intelligence
and that allow opening fields where technology has a challenge that to some extent is a
support to people with low vision and propose mechanisms to improve the quality of life.
Keywords: Artificial intelligence, blindness, visual impairment, visually impaired.
1. INTRODUCCIÓN
La inteligencia artificial (IA) es una disciplina en auge y presente en cada rincón donde haya
tecnología orientada, en mayor o menor grado, al uso de técnicas de aprendizaje de las
máquinas, desde robots en videojuegos hasta asistentes virtuales puntuales. Con el pasar de los
años, el desarrollo de esta disciplina se ha visto evidenciado a nivel mundial, en aspectos como
la medicina, la industria automotriz, la astronomía, entre otros [1], [2], [3]. Es evidente que para
la sociedad en general ha sido indispensable el tener que acoplarse y adaptarse a los cambios
significativos que se han venido realizando en una tarea que no ha sido fácil [4], [5], [6]. El
progreso de esta tecnología ha sido especialmente técnico, utilizando metodologías de
aprendizaje automático [7], [8]. Actualmente cuando se realizan nuevos estudios enfocados en
InGenio Journal, 5(1), 1021
| 11
los aspectos humanos de la IA, estos son centrados en propiedades que permitan una interacción
más cercana a la experiencia similar a la del ser humano [9].
Según estudios de la OMS, se considera que en todo el mundo al menos 2200 millones de
individuos poseen discapacidad visual, de los cuales 88,4 millones presentan errores refractivos
no tratados y 94 millones padecen de cataratas, razones primordiales del deterioro del estado de
la visión [10]. Se identifican trabajos donde evidencian que el 90% de individuos con
deficiencia visual viven en condiciones de bajos recursos, mientras que 82% de los individuos
que son ciegos alcanzan los más de 50 años [11], lo cual provoca que sea determinante
desarrollar aplicaciones e incluso dispositivos que sean simples de manejar sin desconocer que
lo realizado deba funcionar a la perfección [12].
Las personas con baja visión en su mayoría suelen depender de un compañero para
movilizarse, ya sea para acudir al trabajo, permanecer en casa o desplazarse en cualquier
ambiente en el cual se sitúen. En muchos casos no es posible depender de otros métodos que
posibiliten una correcta movilidad debido a la falta de tiempo o de recursos. Por lo tanto, estos
individuos tratan de ser lo más independientes posibles para incorporarse en la sociedad y ser
parte de esta [13].
La inteligencia artificial, el aprendizaje profundo y los macrodatos están aumentando en el
campo de la industria 4.0 [14]. Mecanismos como estos, brindan soluciones económicas y
eficientes para respaldar un diagnóstico anticipado y preciso, facilitando el trabajo de
especialistas y permitiendo la selección de tratamientos específicos [15]. Es imprescindible
desarrollar un estudio sobre el estado del arte del campo que se desea investigar, al inicio de una
reciente investigación científica. Se realizan estudios de revisión y mapeo sistemáticos para la
evidencia empírica sobre un tema específico, determinar brechas en el área de investigación y
proponer puntos de investigación futuros [16].
En el presente documento se evidencian artículos que se centran en inteligencia artificial y su
impacto para las personas con discapacidad visual en el periodo de años, 2017 al 2021,
mediante un estudio de mapeo sistemático, obteniendo información sobre las tendencias de
publicación en esta área de investigación.
2. METODOLOGÍA
Se realiza una investigación analítica descriptiva con enfoque cuantitativo utilizando la
técnica del mapeo sistemático. La metodología de trabajo adopta una revisión de la literatura, la
misma que apunta a una revisión exploratoria en fuentes de información secundaria como las
bases indexadas de artículos de relevancia. Se define una descripción general del área
disciplinaria de investigación, relacionando los trabajos que permiten acortar las brechas que
necesitan ser exploradas. Este procedimiento genera análisis secundarios, estudios que tienen
como objetivo producir comparaciones sistémicas y resúmenes a partir de un conjunto de
análisis elementales seleccionados científicamente [16].
Varios autores [17], realizaron su investigación en torno a un enfoque de los dispositivos de
autoayuda para las personas con discapacidad visual en los últimos años, además de sugerir un
nuevo planteamiento con base en el reconocimiento de objetos con aprendizaje profundo, cuyo
objetivo es realizar búsquedas en trabajos originales que se encuentren involucrados con los
procedimientos de relación de dispositivos usados como sustitución sensorial de la visión. Otro
trabajo [18], corresponde a los autores donde realizan una Sytematic Literature Review (SLR) en
el cual se verifica la situación actual del estudio en relación al reconocimiento de objetos en
dispositivos móviles para discapacitados visuales. Se concluyó que actualmente existe un
notable aumento de los métodos y algoritmos de reconocimiento de objetos que resultan
favorables para las personas con deficiencia visual [13]. En trabajos de investigación [19][20],
se evidencian seis dominios de la “inteligencia artificial” y en sus resultados, se observan que el
InGenio Journal, 5(1), 1021
| 12
porcentaje de trabajos en el área de machine learninges más alto, seguido de la percepción
automática y el reconocimiento de modelos” y “sistemas y aplicaciones inteligentes”.
El flujo de trabajo de mapeo sistemático se construye identificando los trabajos significativos
para la pregunta de investigación, explorar los grupos de artículos reservados en las bases de
datos científicas para detectar esos que permanecen involucrados con el área en particular, en
este caso la inteligencia artificial. Cuando se ha recuperado un lugar de consulta, según la
metodología del mapping system, se filtra, se añade y se clasifica para crear una vista analítica
que logre contestar cuestiones de búsqueda objetiva [21]. Para llevar a cabo el mapeo
sistemático se dividió el proceso en apartados: (A) Definir objetivo de la investigación, (B)
Definir preguntas de investigación, (C) Plantear método de búsqueda y cadenas utilizadas, (D)
Identificar herramientas e instrumentación y establecer criterios de selección.
Se categorizan los estudios existentes en torno a la inteligencia artificial en el ámbito de la
discapacidad visual. Además, se sistematizan las principales técnicas y herramientas empleadas
en los diferentes artículos seleccionados.
Este trabajo plantea como objetivo, categorizar los estudios existentes en torno a la
inteligencia artificial y su relevancia en la discapacidad visual, a fin de obtener una visión
general de las tendencias y técnicas utilizadas en esta área de investigación, realizando un
mapeo sistemático. Con ello, los objetivos específicos se direccionan en: Evaluar los trabajos
relevantes enfocados en el tema de estudio, como punto de partida para la propuesta de
investigación, sistematizar las principales técnicas y herramientas empleadas en los diferentes
trabajos de investigación, e identificar los temas prominentes correspondientes a la inteligencia
artificial.
Se procede a definir las preguntas de investigación que corresponden en relación con el
tiempo, a las técnicas utilizadas y al tipo de publicaciones que en común se encuentre
producción científica sobre inteligencia artificial con enfoque a la discapacidad visual, ver tabla
1.
Tabla 1. Preguntas de investigación.
Componentes de información
Preguntas para responder
Cantidad de publicaciones por años
¿Qué propuestas basadas en inteligencia artificial existen para
la discapacidad visual a partir del año 2017?
Tendencias de aplicación por años
¿Cuáles son las técnicas de inteligencia artificial utilizadas en
los estudios encontrados?
Características de las publicaciones
¿En qué tipo de publicaciones es común hallar la producción
científica en el campo de la inteligencia artificial?
Para efectuar la investigación bibliográfica de los trabajos involucrados con el asunto de
análisis, se examinaron bancos de datos de referencias bibliográficas: Web of Science, Scopus,
IEEExplore y Springer, los cuales permiten realizar las búsquedas de los estudios más
relevantes por cadenas de palabras claves. Scopus e IEEExplore son bancos de datos clave que
brindan temas destacados en el ámbito de la computación, un aspecto importante en el campo de
búsqueda de la visión sensorial [17]. IEEExplore es la plataforma de investigación de mayor
accesibilidad en el ámbito académico que permite el acceso legítimo a la totalidad de institutos
universitarios [22] de acuerdo con paquetes y contratos a instituciones educativas. En cuanto a
Web of Science, registra referencias científicas de enorme efecto, alcance y relevancia de
acuerdo con altos índices de citaciones. Esto además posibilita profundizar el material
explorado, procesando una gran cantidad de trabajos tales como tomos, apartados, artículos y
presentaciones en congresos de relevancia [23]. Se ha planteado el uso de otros repositorios
digitales como ACM, arXiv, OpenAI entre otros, en futuros trabajos de actualización de la
literatura.
InGenio Journal, 5(1), 1021
| 13
Con la finalidad de precisar la información que se quiere buscar, se realiza una consulta
avanzada en la cual se tiene la posibilidad de acoplar una o algunas palabras usando los
operadores booleanos, que posibilitan producir squedas más específicas. Se limita la
búsqueda con el uso de las palabras clave visual disability, blindness, artificial
intelligence. Para anexar cada palabra clave y conceptualizar la consulta, usamos los
operadores booleanos: “AND”, “OR”. Se usan los paréntesis para llevar a cabo en primera
instancia la alianza (OR), y dicho resultado compaginarlo con otro término por medio del
booleano AND. La cadena de consulta usada es (All Metadata:visual disability) OR (All
Metadata:blindness) AND (All Metadata:artificial intelligence).
Con el propósito de abarcar en este estudio trabajos pertinentes y determinantes se
consideran los siguientes criterios primordiales usados para la obtención de resultados
apropiados en cada sesión de consulta para las diversas bases de datos, para los criterios de
inclusión se considera, toda información científica es electiva para su integración si se refiere al
asunto de consulta que se muestra en este análisis; se integran estudios sobre la relación de los
discapacitados visuales con las múltiples tecnologías o herramientas de IA; se integran estudios
en inglés. Para los criterios de exclusión, se descartan los estudios que hayan sido publicados
previamente del 2015; se excluyen los artículos que no permanecen involucrados con las
técnicas y procedimientos de IA para la discapacidad visual. Una vez ejecutada la consulta e
implementando los criterios antes mencionados se visualizan los datos conseguidos para tener
en cuenta si los estudios arrojados en las distintas bases de datos bibliográficas son los
pertinentes para el análisis postulado.
3. RESULTADOS
Se muestra la ejecución y los resultados conseguidos a lo largo de la investigación tras
implementar filtros de consultas para obtener resultados más específicos. Se hace la consulta
bibliográfica en diversas bases de datos a fin de reducir el riesgo de no recobrar cualquier
artículo fundamental. Se realizan dos fases en el proceso de búsqueda, la distinción de trabajos y
la extracción de documentos. Para la primera fase, la selección de los artículos fue valorada con
los criterios de inclusión y exclusión como se muestra en la figura 1.
Figura 1. Estudios identificados bajo el modelo PRISMA.
InGenio Journal, 5(1), 1021
| 14
Del total de resultados, se escogen los importantes para el análisis, como se observa en el
modelo PRISMA. Para considerar su aprobación o rechazo, se revisan los títulos, los resúmenes
y las palabras claves. Para la segunda fase, luego de cada una de las sesiones de consultas, se
obtuvo 88 artículos para el estudio, los mismos fueron catalogados según los criterios de
inclusión y exclusión. Las cadenas de búsqueda aplicadas a las diferentes bases de datos
utilizadas y el número de resultados que arrojaron después de su ejecución se presentan en la
tabla 2.
Tabla 2. Cadenas de búsqueda de la segunda fase.
Base de datos
Resultados
WoS
26
Scopus
23
IEEExplore
34
Springer
5
Un total de 575 artículos se determinan desde las búsquedas llevadas a cabo en las bases de
datos. Justo después de haber excluido los estudios duplicados, se examinan los títulos y
resúmenes de 88 artículos en función de los criterios de inclusión. Al final, 33 artículos cumplen
los criterios de elegibilidad, los mismos que se incluyen en el presente análisis. Se inspeccionan
los datos obtenidos con la intención de responder a las preguntas de investigación determinadas,
¿Qué propuestas basadas en inteligencia artificial existen para la discapacidad visual a partir del
año 2017?; luego de aplicar los filtros correspondientes para seleccionar los trabajos relevantes
que forman parte del estudio, se obtiene un total de 12 trabajos en IEEExplore, 12 trabajos en
Scopus, 4 trabajos en Springer y 5 trabajos en Web of Science. Las naciones que han utilizado
IA (inteligencia artificial) con enfoque a la discapacidad visual son China e India como países
que apuestan más investigación en este asunto cada uno con un 15% y 12% respectivamente.
Con base en la exploración de los trabajos integrados en el análisis, la tabla 3 proporciona
una recopilación de las iniciativas existentes sobre inteligencia artificial y su aplicación a la
discapacidad visual. En la misma se describe la solución propuesta para cada referencia, además
de la técnica o campo que fue abordado.
Para la identificación de las principales técnicas o campos abordados en los artículos
estudiados es necesario destacar que se ha tomado en cuenta criterios como: si el campo tratado
ha sido usado de manera directa en alguna fase del desarrollo de la iniciativa, si la técnica
mencionada forma parte de otra rama de estudio más extensa en la IA.
Durante algún tiempo las herramientas del aprendizaje automatizado han sido las más
utilizadas en la clasificación de imágenes. De esta forma, con la aparición de la visión artificial
y la exigencia de procesar un gran volumen de datos, además de impedir la redundancia de
estos, llegaron tecnologías de aprendizaje profundo [40]. Se ha podido identificar estudios
donde ponen en evidencia que el aprendizaje profundo es una subdivisión del aprendizaje de
máquinas que simula el comportamiento del órgano cerebral humano basado en las redes
neuronales artificiales [40], [41]. Adicionalmente, las redes neuronales de convolución son una
rama de las redes neuronales artificiales las cuales disminuyen gatos de computación y tiempo
de procesado [30], [40].
InGenio Journal, 5(1), 1021
| 15
Tabla 3. Recopilación de las propuestas basadas en IA.
Propuesta según el ámbito de técnicas de IA
Estudio
Técnicas con aprendizaje automático
Estudio de mecanismos de IA usados en el cribado de afecciones visuales derivadas de la
diabetes
[15]
Modelo de software que permite identificar objetos con reconocimiento del habla
[17]
Método automatizado de detección de patologías oftálmicas como la coriorretinopatía
[20]
Sistema de ayuda a la navegación mediante el uso de un smartphone
[24]
Aparato de navegación portable con base en segmentación semántica y percepción auditiva
[25]
Anteojo inteligente con sensor de ultrasonido y detector de texto en imágenes capturadas
[26]
Sistema de apoyo al desplazamiento con detección de apariencia, colores y objetos
[27]
Arquitectura propuesta para el progreso en la detección del glaucoma aplicando un esquema
de redes neuronales combinadas
[28]
Técnicas con redes neuronales artificiales
Método de análisis para patologías oculares
[29]
Estudio para la búsqueda de soluciones de IA como mecanismo de mejora para trastornos
oculares
[30]
Enfoque de red neuronal como solución para el tratamiento de afecciones corneales
[31]
Estudio para el pronóstico del campo de la visión en la valoración del glaucoma
[32]
Método para el análisis de severidad de retinopatía diabética basada en CNN
[33]
Técnicas con visión artificial
Dispositivo portátil capaz de detectar texto en imágenes y transformarlo a voz
[11]
Mecanismo de ayuda para la movilidad con sensores ultrasónicos
[12]
Sistema de detección de señaléticas con componente de conversión de texto a mensaje
auditivo
[13]
Sistema de asistencia con detección de rostros
[34]
Análisis de usabilidad de aplicaciones móviles fundamentadas en IA
[14]
Desarrollo de un sistema de navegación por medio del uso de drones incorporados de IA
[35]
Detección de fármacos en función del texto y la cantidad de colores
[36]
Dispositivo de asistencia dotado de sensores ultrasónicos con detección automatizada de
obstáculos y billetes y salida de audio
[37]
Aparato portátil con identificación de objetos, reconocimiento de la cara y módulos de rastreo
[38]
Sistema de desplazamiento autónomo con detección de trayecto virtual preestablecido
mediante la ayuda de un teléfono inteligente
[39]
Evaluando dichos criterios se señala que los autores [15], [17], [20], [24][26], [28], abordan
algoritmos de Deep Learning en su investigación. Para el presente análisis, estos trabajos han
sido agrupados dentro del campo de aprendizaje automático. En los informes [30], [32], [33] los
investigadores se inclinan por el uso de tecnologías de redes neuronales de convolución para la
elaboración de sus propuestas, estas referencias se han considerado dentro del área de las redes
neuronales artificiales.
Para la pregunta ¿Cuáles son las técnicas de inteligencia artificial utilizadas en los estudios
encontrados?; las técnicas de IA (inteligencia artificial) más usadas en los trabajos de estudio
seleccionados con enfoque a la discapacidad visual se evidencian con altos índices de trabajos a
partir del año 2017.
Se evidencia las técnicas de inteligencia artificial de mayor interés en las referencias
científicas incluidas en el presente trabajo de investigación y su impacto porcentual por año, ver
figura 2. En el 2018 y 2021 son los años de creciente auge en invenciones e innovaciones en lo
que concierne a la IA y sus técnicas, del cual un total del 86% corresponde al año 2018 y el 76%
al 2021.
InGenio Journal, 5(1), 1021
| 16
Figura 2. Técnicas de inteligencia artificial identificas por año.
La visión artificial logra una incidencia del 39% y las redes neuronales artificiales con un
total del 38%, campos de más grande aplicación concerniente al 2018, mientras que el
aprendizaje automático con un 28% es la técnica de mayor relevancia referente al 2021, ver
figura 2.
Se puede evidenciar un importante desarrollo de propuestas que posibiliten la vida de los
individuos que presentan discapacidades visuales. En [37] se plantea un sistema de ayuda a la
navegación automática que se fundamenta en la inteligencia artificial, en el que se entrenan
redes neuronales de aprendizaje profundo utilizando el algoritmo YOLO-v3 para la detección de
objetos, como consecuencia se transmite entradas auditivas en tiempo real, lo cual brinda una
mejor comprensión al individuo con deficiencia visual sobre su ámbito.
Por otro lado, existen muchas técnicas que fomentan el aumento de sistemas de navegación,
además del uso de la visión por computadora. El sistema postulado por [12] se fundamenta en el
reconocimiento de imágenes, localización de choques y detección de obstáculos con sensores
ultrasónicos que se hayan ubicados en la parte inferior y delantero de un bastón dotado con un
microcontrolador Arduino Nano y una aplicación de teléfono inteligente equipada de IA que
posibilita capturar imágenes tomadas por el usuario, se detalla el contenido de dichas imágenes
por medio de Google TalkBack. Las imágenes se examinan utilizando visión por computadora,
aprendizaje automático y redes neuronales de parte de la API Microsoft Cognitive Services.
Otra iniciativa es DEEP-SEE FACE [34] un mecanismo de ayuda que utiliza la visión por
ordenador y redes neuronales convolucionales profundas entrenadas capaces de determinar en
tiempo real diversos sujetos sobre la base de secuencias de video, el sistema se constituye de
módulos como la detección de rostros, el rastreo de la cara y el reconocimiento de apariencia.
La información detectada en el ámbito del individuo es tratada, analizada y transferida como
mensajes auditivos, por medio de audífonos de conducción ósea exponiendo específicamente la
detección del usuario o la existencia de un rostro familiar.
En el análisis llevado a cabo por [38] crearon un aparato wearable que cuenta con variadas
funcionalidades como la identificación de objetos, reconocimiento de la cara, sensores
ultrasónicos que alertan al sujeto sobre los obstáculos que se localizan en su panorama haciendo