An in silico comparative genomic report on transcription factors in three Arabidopsis species

Palabras clave: Arabidopsis, especies, bHLH, ZF2, ARR11


Transcription factors (TF) are the elements, which regulate gene expression. Regulatory function of TFs play an important role in plant biological processes and mechanisms. They may interconnect with other transcription factors or functional genes to modulate their expression in response to an internal/external factor like life cycle stage, growth, development and stress. Arabidopsis is the well-known and the most used model organism. Transcription factors of three Arabidopsis species including A. halleri, A. lyrata and A. thaliana, were compared. basic/helix-loop-helix (bHLH) with 220 TFs was the most abundant family among three Arabidopsis species while MYB and MYB related families considering as a whole group were more than bHLH with 308 TFs. No STERILE APETALA (SAP) TF homolog was found for A.halleri.  The common transcription factors among three species were 4,172 grouped in 1,212 clusters. The species-specific clustered TFs were 12, 30 and 58 for A. halleri, A. lyrata and A. thaliana respectively. Eight hundred ninety two single-copy gene clusters those have one gene copy from each species, i.e. 2,676 genes, were listed. Four hundred forty five TF singletons were not clustered and are unique among three species. For clustered TF belonging to each species, GO terms and SwissProt hits showed that A. halleri has two species-specific TFs involved in heavy metal response including Zinc finger protein AZF2 and two-component response regulator ARR11 while for A. lyrata specific TFs are involved in stress response and plant development. A. thaliana specific clustered TFs work on plant flower development and acclimation.


La descarga de datos todavía no está disponible.


Ariel, F.D., Manavella, P.A., Dezar, C.A., Chan, R.L., 2007. The true story of the HD-Zip family. Trends Plant Sci. 12, 419–26. doi:10.1016/j.tplants.2007.08.003

Bailey, T.L., Elkan, C., 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36.

Beilstein, M.A., Nagalingum, N.S., Clements, M.D., Manchester, S.R., Mathews, S., 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 107, 18724–8. doi:10.1073/pnas.0909766107

Bomblies, K., Weigel, D., 2010. Arabidopsis and relatives as models for the study of genetic and genomic incompatibilities. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1815–23. doi:10.1098/rstb.2009.0304

Byzova, M. V, Franken, J., Aarts, M.G., de Almeida-Engler, J., Engler, G., Mariani, C., Van Lookeren Campagne, M.M., Angenent, G.C., 1999. Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes Dev. 13, 1002–14.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421. doi:10.1186/1471-2105-10-421

Chen, J., Yang, L., Yan, X., Liu, Y., Wang, R., Fan, T., Ren, Y., Tang, X., Xiao, F., Liu, Y., Cao, S., 2016. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the Glutathione-dependent pathway in Arabidopsis. Plant Physiol. 171, 707–19. doi:10.1104/pp.15.01882

D’Agostino, I.B., Deruère, J., Kieber, J.J., 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124, 1706–17.

Elhiti, M., Stasolla, C., 2009. Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal. Behav. 4, 86–88.

Franco-Zorrilla, J.M., López-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., Solano, R., 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl. Acad. Sci. U. S. A. 111, 2367–72. doi:10.1073/pnas.1316278111

Fung, D.K.C., Ma, Y., Xia, T., Luk, J.C.H., Yan, A., 2016. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. Mol. Microbiol. 100, 774–787. doi:10.1111/mmi.13348

Gangwar, S., Singh, V.P., Prasad, S.M., Maurya, J.N., 2010. Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci. Hortic. (Amsterdam). 126, 467–474. doi:10.1016/J.SCIENTA.2010.08.013

Hu, T.T., Pattyn, P., Bakker, E.G., Cao, J., Cheng, J.-F., Clark, R.M., Fahlgren, N., Fawcett, J.A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J.D., Ossowski, S., Ottilar, R.P., Salamov, A.A., Schneeberger, K., Spannagl, M.,
Wang, X., Yang, L., Nasrallah, M.E., Bergelson, J., Carrington, J.C., Gaut, B.S., Schmutz, J., Mayer, K.F.X., Van de Peer, Y., Grigoriev, I. V, Nordborg, M., Weigel, D., Guo, Y.-L., 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481. doi:10.1038/ng.807

Imamura, A., Kiba, T., Tajima, Y., Yamashino, T., Mizuno, T., Mizuno, T., 2003. In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44, 122–31. doi:10.1093/PCP/PCG014

Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J., Gao, G., 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045. doi:10.1093/nar/gkw982

Kodaira, K.-S., Qin, F., Tran, L.-S.P., Maruyama, K., Kidokoro, S., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., 2011. Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol. 157, 742–56. doi:10.1104/pp.111.182683

Lindemose, S., O’Shea, C., Jensen, M.K., Skriver, K., 2013. Structure, function and networks of transcription factors involved in abiotic stress responses. Int. J. Mol. Sci. 14, 5842–5878.

Liu, L., White, M.J., MacRae, T.H., 1999. Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. Eur. J. Biochem. 262, 247–257. doi:10.1046/j.1432-1327.1999.00349.x

Liu, X., Huang, J., Parameswaran, S., Ito, T., Seubert, B., Auer, M., Rymaszewski, A., Jia, G., Owen, H.A., Zhao, D., 2009. The SPOROCYTELESS/NOZZLE Gene Is Involved in Controlling Stamen Identity in Arabidopsis. PLANT Physiol. 151, 1401–1411. doi:10.1104/pp.109.145896

Pérez-Rodríguez, P., Riaño-Pachón, D.M., Corrêa, L.G.G., Rensing, S.A., Kersten, B., Mueller-Roeber, B., 2010. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38, D822-7. doi:10.1093/nar/gkp805

Pireyre, M., Burow, M., 2015. Regulation of MYB and bHLH transcription factors: A glance at the protein level. Mol. Plant 8, 378–388. doi:10.1016/J.MOLP.2014.11.022

Prigge, M.J., Otsuga, D., Alonso, J.M., Ecker, J.R., Drews, G.N., Clark, S.E., 2005. Class III Homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. PLANT CELL ONLINE 17, 61–76. doi:10.1105/tpc.104.026161

Raines, T., Blakley, I.C., Tsai, Y.-C., Worthen, J.M., Franco-Zorrilla, J.M., Solano, R., Schaller, G.E., Loraine, A.E., Kieber, J.J., 2016. Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biol. 16, 260. doi:10.1186/s12870-016-0932-z

Sarret, G., Willems, G., Isaure, M.-P., Marcus, M.A., Fakra, S.C., Frérot, H., Pairis, S., Geoffroy, N., Manceau, A., Saumitou-Laprade, P., 2009. Zinc distribution and speciation in Arabidopsis halleri  ×  Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol. 184, 581–595. doi:10.1111/j.1469-8137.2009.02996.x

Scofield, S., Dewitte, W., Murray, J.A., 2008. A model for Arabidopsis class-1 KNOX gene function. Plant Signal. Behav. 3, 257–9.

Seo, P.J., Mas, P., 2014. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. Plant Cell 26, 79–87. doi:10.1105/tpc.113.119842

Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., Weisshaar, B., 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677. doi:10.1111/j.1365-313X.2007.03078.x

Stracke, R., Werber, M., Weisshaar, B., 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456. doi:10.1016/S1369-5266(00)00199-0

Toledo-Ortiz, G., Huq, E., Quail, P.H., 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15, 1749–70. doi:10.1105/TPC.013839

Turchi, L., Baima, S., Morelli, G., Ruberti, I., 2015. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. J. Exp. Bot. 66, 5043–5053. doi:10.1093/jxb/erv174
Vailleau, F., Daniel, X., Tronchet, M., Montillet, J.-L., Triantaphylidès, C., Roby, D., 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc. Natl. Acad. Sci. U. S. A. 99, 10179–84. doi:10.1073/pnas.152047199

Wang, Y., Coleman-Derr, D., Chen, G., Gu, Y.Q., 2015. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 43, W78-84. doi:10.1093/nar/gkv487

William, D.A., Su, Y., Smith, M.R., Lu, M., Baldwin, D.A., Wagner, D., 2004. Genomic identification of direct target genes of LEAFY. Proc. Natl. Acad. Sci. 101, 1775–1780. doi:10.1073/pnas.0307842100

Zheng, Y., Jiao, C., Sun, H., Rosli, H.G., Pombo, M.A., Zhang, P., Banf, M., Dai, X., Martin, G.B., Giovannoni, J.J., Zhao, P.X., Rhee, S.Y., Fei, Z., 2016. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol. Plant. doi:10.1016/j.molp.2016.09.014
Cómo citar
Jazayeri, S. M., Pooralinaghi, M., Villamar Torres, R., & García Cruzatty, L. (2018, julio 2). An in silico comparative genomic report on transcription factors in three Arabidopsis species. Ciencia Y Tecnología, 11(1), 1-9.