Microbiota intestinal humana y dieta

  • Carlos Alberto Padrón Pereira Asociación RVCTA
Palabras clave: alimentos saludables, bacterias intestinales, diversidad microbiana, fibras dietéticas, patrones dietéticos, salud

Resumen

La dieta es un factor que impulsa la composición y el metabolismo de la microbiota intestinal, y los macronutrientes ejercen un gran impacto en la microbiota. Los carbohidratos no digeribles pueden producir marcados cambios en la microbiota intestinal, las fibras dietéticas son los principales impulsores de la composición y función de la microbiota intestinal, permiten estimular el predominio de una microbiota capaz de utilizar estos sustratos como fuente de energía, pero estos efectos dependen tanto del tipo de fibra como de la composición inicial de la microbiota intestinal de un individuo. El metabolismo proteico por la microbiota intestinal da como resultado productos adicionales, algunos de los cuales son potencialmente dañinos para la salud del huésped. Firmicutes, Bacteroidetes y Actinobacteria son los tres filos principales que habitan en el intestino grueso humano. El género Bacteroides se asocia con dietas basadas en carne, las familias Ruminococcaceae y Lachnospiraceae con dietas ricas en polisacáridos complejos de plantas y el género Prevotella con dietas altas en azúcar pero bajas en grasas y proteínas. La dieta puede usarse para modular la composición y el metabolismo de la microbiota intestinal. Una estrategia dietética para modular la microbiota es el consumo de fibra dietética y prebióticos. Esta revisión tiene como objetivo describir conocimiento sobre la microbiota intestinal, orientado hacia un uso de la dieta para proporcionar beneficios a la salud humana..

Descargas

La descarga de datos todavía no está disponible.

Citas

Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., et al. 2016. Gut microbiota and extreme longevity. Current Biology. 26(11):1480-1485.
Bian, G., Gloor, G.B., Gong, A.. Jia, Ch., Zhang, W., Hu, J., Zhang, H., Zhang, Y., et al. 2017. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. mSphere. 2(5):e00327-17. 12 p.
Carvalho-Wells, A.L., Helmolz, K., Nodet, C., Molzer, C., Leonard, C., McKevith, B., Thielecke, F., Jackson, K.G., et al. 2010. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. British Journal of Nutrition. 104(9):1353-1356.
Chen, T., Kim, Ch.Y., Kaur, A., Lamothe, L., Shaikh, M., Keshavarzian, A. and Hamaker, B.R. 2017. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food & Function. 8(3):1166-1173.
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., Harris, H.M.B., Coakley, M., et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature. 488:178-184.
Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith, G.A., Travis, D.A., Long, H.T., et al. 2016. Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences (USA). 13(37):10376-10381.
Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V., Leonard, C., Gibson, G.R. and Tuohy, K.M. 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition. 99(1):110-120.
D’Argenio, V. and Salvatore, F. 2015. The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta. 45(Part A):97-102.
Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., Kayser, B.D., Levenez, F., et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 65(3):426-436.
Davenport, E.R., Sanders, J.G., Song, S.J., Amato, K.R., Clark, A.G. and Knight, R. 2017. The human microbiome in evolution. BMC Biology. 15:127. 12 p.
De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., La Storia, A., Laghi, L., Serrazanetti, D.I., Di Cagno, R., et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 65(11):1812-1821.
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 107(33):14691-14696.
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559-563.
Etxeberria, U., Milagro, F.I., González-Navarro, C.J. y Martínez, J.A. 2016. Papel en la obesidad de la microbiota intestinal. Anales de la Real Academia Nacional de Farmacia. 82:234-259.
Fava, F., Gitau, R., Griffin, B.A., Gibson, G.R., Tuohy, K.M. and Lovegrove, J.A. 2013. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. International Journal of Obesity. 37:216-223.
Flint, H.J., Scott, K.P., Louis, P. and Duncan, S.H. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology. 9:577-589.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 469:543-547.
Gerritsen, J., Smidt, H., Rijkers, G.T. and de Vos, W.M. 2011. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & Nutrition. 6(229):209-240.
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology. 14:491-502.
Graf, D., Di Cagno, R., Fak, F., Flint, H.J., Nyman, M., Saarela, M. and Watz, B. 2015. Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease. 26(1):26164. 11 p.
Hehemann, J.H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M. and Michel, G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 464:908-912.
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 11:506-514.
Holscher, H.D. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 8(2):172-184.
Hugon, P., Dufour, J.Ch., Colson, P., Fournier, P.E., Sallah, K. and Raoult, D. 2015. A comprehensive repertoire of prokaryotic species identified in human beings. The Lancet Infectious Diseases. 15(10):1211-1219.
Keim, N.L. and Martin, R.J. 2014. Dietary whole grain-microbiota interactions: insights into mechanisms for human health. Advances in Nutrition. 5:556-557.
Kiefer, J., Beyer-Sehlmeyer, G. and Pool-Zobel, B.L. 2006. Mixtures of SCFA, composed according to physiologically available concentrations in the gut lumen, modulate histone acetylation in human HT29 colon cancer cells. British Journal of Nutrition. 96(5):803-810.
Klemashevich, C., Wu, Ch., Howsmon, D., Alaniz, R.C., Lee, K. and Jayaraman, A. 2014. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. 26:85-90.
Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine. 19:576-585.
Korpela, K. 2018. Diet, microbiota, and metabolic health: trade-off between saccharolytic and proteolytic fermentation. Annual Review of Food Science and Technology. 9:65-84.
Le Leu, R.K., Winter, J.M., Christophersen, C.T., Young, G.P., Humphreys, K.J., Hu, Y., Gratz, S.W., Miller, R.B., et al. 2015. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomized clinical trial. British Journal of Nutrition. 114(2):220-230.
León-Marroú, M.E. 2011. Efecto bifidogénico de jalea de Lepidium  meyenii    Walp. “maca” en el recuento de Bifidobacterium bifidum en yogurt probiótico. Revista Venezolana de Ciencia y Tecnología de Alimentos. 2(1):094-107.
Levine; M.E., Suarez, J.A., Brandhorst, S., Balasubramanian, P., Cheng, C.W., Madia, F., Fontana, L., Mirisola, M.G., et al. 2014. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metabolism. 19(3):407-417.
Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., et al. 2008. Evolution of mammals and their gut microbes. Science. 320(5883):1647-1651.
Lockyer, S. and Nugent, A.P. 2017. Health effects of resistant starch. Nutrition Bulletin. 42(1):10-41.
Lopez-Legarrea, P., Fuller, N.R., Zulet, M.A., Martinez, J.A. and Caterson, ID. 2014. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pacific Journal of Clinical Nutrition. 23(3):360-368.
Lopez-Siles, M., Duncan, S.H., Garcia-Gil, L.J. and Martinez-Medina, M. 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME Journal. 11:841-852.
Macfarlane, G.T. and Macfarlane, S. 2012. Bacteria, colonic fermentation, and gas-trointestinal health. Journal of AOAC International. 95(1):50-60.
Mah, K.W., Sangsupawanich, P., Tunyapanit, W., van Bever, H., Shek, L.P., Chua, K.Y. and Lee, B.W. 2008. Gut microbiota of children living in rural south Thailand and urban Singapore. Allergology International. 57(1):65-71.
Mitsou, E.K., Kougia, E., Nomikos, Tz., Yannakoulia, M., Mountzouris, K.C. and Kyriacou, A. 2011. Effect of banana consumption on faecal microbiota: a randomised, controlled trial. Anaerobe. 17(6):384-387.
Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., González, A., Fontana, L., Henrissat, B., Knight, R. and Gordon, J.I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 332(6032):970-974.
National Center for Complementary and Integrative Health (NCCIH). 2018. Probiotics. U.S. Department of Health & Human Services, National, Institutes of Health. https://nccih.nih.gov/health/probiotics
Nishijima, S., Suda, W., Oshima, K., Kim, S.W., Hirose, Y., Morita, H. and Hattori, M. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research. 23(2):125-133.
Parajuli, A., Grönroos, M., Kauppi, S., Płociniczak, T., Roslund, M.I., Galitskaya, P., Laitinen, O.H., Hyöty, H., et al. 2017. The abundance of health-associated bacteria is altered in PAH polluted soils-Implications for health in urban areas? PLoS ONE. 12(11):e0187852.
Patel, S. and Goyal, A. 2012. The current trends and future perspectives of prebiotics research: a review. 3 Biotech. 2(2):115-125.
Rajoka, M.S.R., Shi, J., Mehwish, H.M., Zhu, J., Li, Q., Shao, D., Huang, Q. and Yang, H. 2017. Interaction between diet composition and gut microbiota and its impact ongastrointestinal tract health. Food Science and Human Wellness. 6(3):121-130.
Rodicio, M. del R. y Mendoza, M del C. 2004. Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica. 22(4):238-245.
Schnorr, S.L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, E., et al. 2014. Gut microbiome of the Hadza hunter-gatherers. Nature Communications. 5:3654. 12 p.
Sheflin, A.M., Melby, C.L., Carbonero, F. and Weir, T.L. 2017. Linking dietary patterns with gut microbial composition and function. Gut Microbes. 8(2):113-129.
Shinohara, K., Ohashi, Y., Kawasumi, K., Terada, A. and Fujisawa, T. 2010. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe. 16(5):510-515.
Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., et al. 2017. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine. 15:73. 17 p.
Slavin, J. 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 5(4):1417-1435.
Świątecka, D., Narbad, A., Ridgway, K.P. and Kostyra, H. 2011. The study on the impact of glycated pea proteins on human intestinal bacteria. International Journal of Food Microbiology. 145(1):267-272.
Thursby, E. and Juge, N. 2017. Introduction to the human gut microbiota. Biochemical Journal. 474(11):1823-1836.
Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop,G., Ze, X., Brown, D., Stares, M.D., et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal. 5:220-230.
Wang, B., Yao, M., Lv, L., Ling, Z. and Li, L. 2017. The human microbiota in health and disease. Engineering. 3(1):71-82.
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levinson, B.S., DuGar, B., Feldstein, A.E., Britt, E.B., et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472:57-63.
Wu, G.D., Chen, J., Hoffmann, Ch., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science. 334(6052):105-108.
Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., et al. 2012. Human gut microbiome viewed across age and geography. Nature. 486:222-227
Publicado
2019-09-12
Cómo citar
Padrón Pereira, C. (2019, septiembre 12). Microbiota intestinal humana y dieta. Ciencia Y Tecnología, 12(1), 31-42. https://doi.org/https://doi.org/10.18779/cyt.v12i1.176